

Pró-Ensino

LISTA DE EXERCÍCIOS EQUILÍBRIO DE FASES E DIAGRAMAS DE SUBSTÂNCIAS SIMPLES

físico-Química

2024

LISTA DE EXERCÍCIOS: EQUILÍBRIO DE FASES E DIAGRAMAS DE SUBSTÂNCIAS SIMPLES

- 01. (ATKINS) A diferença de potencial químico entre duas regiões de um sistema é +7,1 kj mol⁻¹. De quanto varia a energia de Gibbs quando 0,10 mmol de uma substância é transferida de uma região para outra?
- 02.(CASTELLAN) O naftaleno, $C_{10}H_8$, funde a $80,0^\circ$. Se a pressão de vapor do líquido é 10,0 torr a $85,8^\circ$ C e 40 torr a $119,3^\circ$ C e a do sólido é 1 torr a $52,6^\circ$ C, calcule:
 - a) ΔH_{vap} do líquido, o ponto de ebulição e ΔS_{vap} em T_{eb} .
 - b) A pressão de vapor no ponto de fusão.
 - c) Admitindo que as temperaturas do ponto de fusão e do ponto triplo sejam as mesmas, calcule ΔH_{sub} do sólido e ΔH_{fus} .
 - d) Qual deve ser a temperatura para que a pressão de vapor do sólido seja inferior a 10⁻⁵ torr?
- 03. (LEVINE) Verdadeiro ou falso?
 - a) ΔG não é definida para um processo em que T varia.
 - b) $\Delta G = 0$ para uma mudança de fase reversível a T e P constantes.
- 04. (COSTA) Calcule a fração molar de moléculas de sacarose em uma solução 1,22 m de $C_{12}H_{22}O_{11}$ (aq).
- 05.(ATKINS) Qual o número máximo de fases que podem estar em equilíbrio mútuo em um sistema de dois componentes?
- 06. (ATKINS) De quanto varia o potencial químico do cobre quando a pressão exercida sobre uma amostra aumenta de 100 kPa a 10 MPa?
- 07. (LEVINE) Para cada um dos processos vistos a seguir, diga qual das variações: ΔU , ΔH , ΔS , ΔS_m e ΔG tem que ser zero.
 - a) Um gás não ideal que percorre um ciclo de Carnot.
 - b) Hidrogênio é queimado em um calorímetro adiabático de volume constante.
- 08. (CASTELLAN) a) A partir do ponto de ebulição $T_{\rm eb}$ de um líquido, admitindo que o líquido obedeça à regra de Trouton, calcule a pressão de vapor em qualquer temperatura T
 - b) O ponto de ebulição do éter dietílico é 34,6°C. Calcule a pressão de vapor a 25°C.
- 09 (COSTA) Qual o valor da pressão parcial de metano necessária para se dissolver 21 mg de metano em 100 g de benzeno a 25°C?

LISTA DE EXERCÍCIOS: EQUILÍBRIO DE FASES E DIAGRAMAS DE SUBSTÂNCIAS SIMPLES

Dado: $K_B = 5,69 \times 10^4 \text{ kPa para a lei de Henry.}$

- 10. (ATKINS) A pressão de vapor do diclorometano, a 24,1°C, é 53,3 kPa e sua entalpia de vaporização é 28,7 kJ mol⁻¹. Estime a temperatura em que a pressão de vapor é de 70,0 kPa.
- 11. (LEVINE) Para H₂O(s) a 0°C e 1 atm, quais das seguintes grandezas têm que ser iguais nas duas fases?
 - a) S_m
 - b) U_m
 - c) H_m
 - d) G_m
 - e) μ_{m}
 - f) V_m
- 12. (ATKINS) Quando o benzeno congela a 5,5°C, a massa específica passa de 0,879 g cm⁻³ para 0,891 g cm⁻³. A entalpia de fusão é de 10,59 kJ mol⁻¹. Estime o ponto de congelamento do benzeno a 1000 atm.
- 13. (CASTELLAN) A densidade do diamante é 3.52 g/cm³ e a da grafita é 2,25 g/cm³. A 25°C a energia de Gibbs de formação do diamante, a partir da grafita, é de 2900 kJ mol⁻¹. A 25°C, qual a pressão que deve ser aplicada para estabelecer o equilíbrio entre o diamante e a grafita?
- 14. (COSTA) Qual o ponto de congelamento de uma solução contendo 3,42 g de sacarose e 500 g de água?

Dado: MM (sacarose) = 342 g mol⁻¹; $K_f = 1,86 \text{ kg K mol}^{-1}$.

- 15. (ATKINS) Em Los Angeles, no mês de julho, a radiação da luz solar incidente no nível do solo tem uma densidade de potência de 1,2 KW m⁻², ao meio-dia. Uma piscina com área superficial de 50 m² está diretamente exposta ao sol. Qual a taxa de evaporação da água da piscina, admitindo-se que toda a radiação incidente é absorvida?
- 16. (CASTELLAN) A transição

 $Sn(s, cinza) \rightleftharpoons Sn(s, branco)$

está em equilíbrio a 18° C e 1 atm de pressão. Se, para a transição a 18° C, $\Delta S = 8.8 \text{ J K}^{-1} \text{ mol}^{-1}$ e se as densidades são iguais a 5.75 g/cm^{3} para o estanho cinza e 7.28 g/cm^{3} para o estanho branco, calcule a temperatura de transição a 100 atm de pressão.

LISTA DE EXERCÍCIOS: EQUILÍBRIO DE FASES E DIAGRAMAS DE SUBSTÂNCIAS SIMPLES

- 17. (ATKINS) O naftaleno, C₁₀H₈, funde a 80,2°C. Se a pressão de vapor do líquido for de 1,3 kPa a 85,8°C e 5,3 kPa a 119,3°C, use a equação de Claus-Clapeyron para calcular (a) a entalpia de vaporização, (b) o ponto de ebulição normal e (c) a entropia de vaporização no ponto de ebulição.
- 18. (CASTELLAN) A água líquida sob uma pressão de ar de 1 atm e 25°C possui uma pressão de vapor maior do que aquela que teria na ausência do ar. Calcule o aumento da pressão de vapor produzida pela pressão do ar sob a água. A densidade da água = 1 g/cm³; pressão de vapor (na ausência da pressão atmosférica) = 3167,2 Pa.
- 19.(COSTA) Calcule a constante de equilíbrio da reação: $3H_2(g) + 2N(g) \rightarrow 2NH_3(g)$, a 25°C, sabendo que $\Delta G_r^\circ = -32,90$ kJ mol⁻¹.
- 20. (ATKINS) Calcule o ponto de fusão do gelo sob pressão de 50 bar. Admita que a massa específica do gelo, nestas condições, seja aproximadamente de 0,92 g cm⁻³ e a da água líquida de 1,00 g cm⁻³.

GABARITO

- 1) 0,71 J
- 2) a) 48,5 kJ mol⁻¹; 489 K; 99,2 J K⁻¹ mol⁻¹
 - b) 7,65 mmHg = 1020 Pa
 - c) $\Delta H_{\text{sub}} = 71.0 \text{ kJ mol}^{-1}$; $\Delta H_{\text{fus}} = 22.5 \text{ kJ mol}^{-1}$
 - d) T < 226,3 K
- 3) a) V
 - b) V
- 4) $2,15 \times 10^{-2}$
- 4 fases.
- 6) 70 J mol⁻¹
- 7) a) Todas são zero
 - b) $\Delta U = 0$

- 8) a) $\ln p = 10.8 (1 T_b / T)$
 - b) 72 kPa
- 9) 58,2 kPa
- 10) 31°C
- 11) a) Não
 - b) Não
 - c) Não
 - d) Sim
 - e) Sim
 - f) Não
- 12) 281,8 K, ou 8,7°C.
- 13) 1,50 GPa = 14800 atm
- 14) -0,037°C
- 15) 25 g s⁻¹.
- 16) 13°C
- 17) a) + 49 kJ mol⁻¹;
 - b) 215°C;
 - c) +101 J K⁻¹ mol⁻¹
- 18) 0.017 mmHg = 2.3 Pa
- 19) $K = 5.8 \times 10^{-5}$
- 20) 272,80 K.

Bibliografia:

ATKINS, Peter; PAULA, Julio de. **Físico-Química** 1. 9. ed. Rio de Janeiro: Grupo Editorial Nacional, 2012.

CASTELLAN, G. **Fundamentos de Físico-Química.** Livros Técnicos e Científicos Editora, 1986.

COSTA, H. M. D. **Físico-Química Aplicada à Farmácia.** 1. ed. Rio de Janeiro: SESES, 2018.

LEVINE, I. N. Físico-Química. 6. ed. Rio de Janeiro: LTC, 2012